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Abstract. The Rarita-Schwinger theory of a massless spin-: field belonging to the mixed 
spinor representations (1, f) and (4, 1) and the unmixed spinor representations (f, 0) and 
(0,;) is explored. The motion is indeterminate to within a group of gauge transformations. 
It is found that the gauge invariants transform according to the unmixed spinor representa- 
tions ( 3 , O )  and (0,;). The gauge invariants are quantized by a new non-canonical 
coordinate-covariant Lagrangian procedure, and the anticommutators are found to be 
positive. It is shown that the energy-momentum tensor is irremediably gauge variant, thus 
ruling out any possibility of gravitational interaction. It is found that electromagnetic 
interaction is also quite impossible to achieve. 

1. Introduction 

The indefinite metric problems which arise in the theory of quantized interacting spin-: 
fields are well known (Johnson and Sudarshan 1961, Hagen 1971, 1974), as are the 
related causality problems of the classical theory (Velo and Zwanziger 1969, Shamaly 
and Capri 1972, Madore and Tait 1973, Jenkins 1974, Mainland and Sudarshan 1974, 
Prabhakaran etal 1975, Singh 1975, Tait 1975). Although it is not strictly of physical 
interest we judged that it would be worthwhile to study the massless spin-: field 
equation, in order to obtain a better understanding of the nature of the singular 
differential operators of high-spin theory (Wightman 1973), and to obtain also a better 
appreciation of the roles which might be played by the various available irreducible 
representations ( p ,  q )  (Le Couteur 1950, Cox 1974a, b, c) of the Lorentz group. 

The massless theory provides a particularly interesting test case for Fermi-Dirac 
quantization methods, since the field equations are indeterministic and generate 
constraints. We apply here the invariant quantization method of Allcock (1975a), and 
show that it can deal quickly and effectively with both these problems. This part of the 
paper can be regarded as complementary to the work of Hall (1974), which deals with 
the invariant quantization of constrained Bose-Einstein systems. 

Throughout we use real Dirac matrices yw, obeying { y w ,  y ” }  = -2g@”, where gFV = 
diag(1, -1, -1, -1). Greek indices run from 0 to 3, Latin ones from 1 to 3. yo== 
-yo,  YT= Y ,  Gp -+”yo and +” is anticommutative and Hermitian. 

2. The massless Rarita-Schwinger field 

We take an Hermitian and anticommutative Rarita-Schwinger (Rarita and Schwinger 
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1941) four-vector-spinor (CI” to represent particles with helicity .t$, and we take as 
Lagrangian density the Hermitian expression 

2= A i [  2 * ” ( Y W ”  - - ( ~ Y ) ( a * ) - ~ a ” ( ~ ) - ( ~ Y ) ( Y a ) ( Y $ ) l .  (1) 

(ra)+l” - y”(a*) -~ (Y*) -Y”(Ya) (Y$)  =o. (2) 

(a*) + (YNY$) = 0 (3) 

( Y @ V  - 8 ( 7 + )  = 0- (4) 

aj*j - yjajyk$k = 0. ( 5 )  

We vary the action A = j 2  d4x to obtain the Euler-Lagrange equations 

Contracting (2) with y” leads us to 

which with (2) gives 

The differential operator in (2) is singular; putting p = 0 we have the primary constraint 

Putting p = j  in (2) leads us to equations of motion, 

which fix a,$, completely. Differentiation of ( 5 )  with respect to x o  and substitution from 
(6) for yields no further information on the do+” and no further constraints. This 
means that the constraint hierarchy (Allcock 1975b) of 2 is already completed; ( 5 )  is 
the only constraint on the system. 

2.1. The spinor gauge group 

Superficially, it now appears that we have too many independent variables to describe 
massless spin-; particles. However, we have equations of motion only for the (Is and not 
for ccl0. This indeterminacy motivates us to look for a gauge group (Fierz and Pauli 
1939); a group of transformations involving arbitrary functions, and expressing com- 
pletely the indeterministic aspects of the dynamic evolution of the system. 

Let $” undergo a spinor gauge transformation 

*” + *p + a+X, (7) 
where ,y is an arbitrary spinor. It is easy to show that 2 is invariant under (71, to within a 
perfect differential. The extremals of the action (i.e. the equations of motion) are 
insensitive to perfect differentials and hence the theory admits a spinor gauge group. 

It is easy to see that this exhausts the indeterminacy. Moreover, from the sixteen 
independent variables present in (G; the constraint (5 )  already freezes out four and the 
gauge freedoms of $, and IL0 use up another eight so that only four variables are left to 
carry the dynamics. This is precisely the number required to describe a particle of 
helicity 4 and its antiparticle of helicity -$. 

2.2. The canonical energy-momentum tensor 

It is well known that in the case of linear theories of particles of helicity k 2  the 
appropriately linearized Einstein energy-momentum pseudotensor tgv is not gauge 
invariant, and that in spite of this a definite meaning can still be attached to the total 
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energy-momentum carried by the field. We shall show in this subsection that a similar 
situation arises in the case of helicity *& and we may plausibly infer that the same 
applies for all helicities h higher in absolute value than unity. Thus it appears that the 
theory of the electromagnetic field occupies a unique position among massless gauge 
theories, in that it is the only such theory for which observable concepts of energy and 
momentum can be defined locally. This obviously has re!evance to the problem of 
gravitational interaction of massless particles, constituting, in effect, a no-go theorem 
for Ihl> 1. It also has relevance to the local properties of energy and momentum as 
formulated by Schwinger, for which see Bender and McCoy (1966). 

We start by looking at the canonical tensor, which is defined by 

T + u  E T u a a p + "  - 9 g f i u  (8) 

aUTfiu = 0 

T u a  ca,3/a(au+") =-ti[$a~u - $ v ~ a  -($~)gua - ($Y>Y~Y~I ,  

and has the conservation property 

as a consequence of (2). From (1) 

(9) 

where the suffix F denotes the right-handed derivative (cf 0 3.1). Feeding (9) into (8) 
and using (2) we thus obtain the formula 

(10) T = - I  2i[$a~ua,+a - ( $ Y F J ~ + ~  - $ u a , ( ~ ) - ( $ ~ > ~ u a , ( ~ + ) ~ .  

From the conservation property it follows of necessity that the total energy and 
momentum is unaffected by the indeterminacy of the motion, i.e. is gauge invariant. 
Our interest is however to see whether T,,, itself is gauge invariant. 

Under the gauge transformation (7), TPu changes in a non-trivial way. We find that 
it transforms according to 

1 .  1 - yPuA = - Z ~ { Z X Y ~ X  a,C(ra)x + (Y+)I + x ~ ~ a ,  (aAx + $A) + a,xYA [+U + i Y ~ ( Y + ) ] ) .  (1 16) 

This means that the energy and momentum cannot be localized in space in any way 
independent of the choice of gauge, although the explicit antisymmetry built into (1 la)  
makes it obvious that the total energy and momentum is indeed gauge invariant, in 
accord with the general argument given above. 

2.3. Belinfante 's tensor 
We now look at Belinfante's symmetric energy-momentum tensor to see if this fares 
any better. 

Under the infinitesimal Lorentz transformation x, +X I  = x, + SO,J~ we have 

+, ( x )  + $: (x ' )  = 4, ( x )  +; ~ ~ p a M ~ , ' + u ( x ) ,  

MP" y = -I 4 [ yp, y"]S,' + s p y u  - G,"gPY 

(12) 

P (13) 

where 
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(Le Couteur 1950). The spin moment of momentum density Hup+ is defined by 

H ’ P W  TPaM”P,p+p (14) 

where rPLI is defined in (9). 
Belinfante’s symmetrized energy-momentum tensor 8”’ is then defined by 

HPI””) (15) 6 “ p  E TUP _ -  a, (,UP@ - HWP - 

(Belinfante 1939, J M Jauch in Wentzel 1949). From (9), (13) and (14) we have 
W P P  = -I 2i{-$@rPL[rY, rP1+, + 211rYYVP ++P[rU3 r”I(r4) 

- ($r)g””+” + ($r)gWP+’ +$($r)r”[r”, r”I(r+)l. (16) 

From (lo), (15) and (16) we eventually arrive at 

O u p  = -1,[I 2 ’  2 +  -a ( ~ ” 8  +ypa”)+, ++($r)(a’+P +8+”)-+($”8 +POW) 
++(PT” + &”Y~)(YW+) - P ~ , ( Y ~ V  + Y ~ + ” ) +  ($”a“ + Pa”)(a+) 
- clr”(ra)+,g” -($r)(a+)g” +21cIc”~,(ylL)gUP1 (17) 

after having made much use of the equations of motion (2). The symmetry of Ovp can be 
plainly seen and a little calculation reveals that dpO” = 0 by virtue of (2). 

Let +, be once more subjected to the gauge transformation (7). The extra terms 
produced in OUp are again non-trivial. After much calculation involving the repeated 
use of (2)  they can be cast into the form 

a, d p u P p P  = $id, ap (gpps + g @ s p a  - g ” P s “ P  - g ” B s ” P )  

s p y  = -j[r”+” + y”*” -g”P(y+) ++(yU#+ yPa”)x - ;g”P(ra)x]  = s u p .  

(18) 

where 

The structureYUpp can be seen to vanish when any three of its indices are put equal; in 
particular if cy = p = E, = 0. Therefore, in view of the symmetry of Y in the indices ap, 
we have 

a, a,PFP d3x = j a, (a,PpJP + aoPPJo) d3x = 0. 

Thus the total amount of energy and momentum carried by Oup is gauge invariant, as it 
should be (and it is of course equal to that carried by TUP).  But the distribution of this 
energy and momentum through space depends in an essential way upon the choice of 
gauge, as was the case with TUP. There is no covariant way to fix the gauge and thus 
dispose of this unwelcome and unphysical ambiguity. 

2.4. Perfect differentials 

The lack of gauge invariance of the energy-momentum tensors and the non-sensitivity 
of the action principle to perfect differentials prompts us to ask whether gauge 
invariance could be restored by means of adding perfect differentials to 2’. There are 
three perfect differentials we could consider, namely 
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The first two of these are identically zero by virtue of the anticommutative property of 
the +, which leaves only the third. Let us therefore consider 

where k is an arbitrary constant. 

TPv is 
Its contribution to 7rpa is 7rlpa = i i k P y a  -&ik($y)g’”” and hence its contribution to 

T k v =  i i k $ u a p  (y$)-tik($?)ap+v - b i k @ a A  (yq)&v +iik($y)(a+)gpv (20) 

from (8). The structure of this expression is quite different from that of ( l l a ) ,  ( l l b ) ;  
therefore there is no value of k which would render Tpv gauge invariant. 

From (13) and (14) the contribution of (19) to FPp is 

H l V P P  = 1 2i~[($Y>(gpp~v - gpv+p)I, 
and so 

- ~ ~ , ( H ~ v P c L  - H ~ V W P  - H JPCLV ) - - -  - :ikap[(&Y)(gPv+p -gc”v+p)l. 

Adding this to (20) we have that the contribution to dvp is zero, so obviously 8”’ cannot 
be made gauge invariant either. 

2.5. The chirality current 

The Lagrangian (1) is invariant under the chiral transformation 
hence admits, through Noether’s theorem, a conserved chiral current 

+ exp( 0y5)+, and 

J, = -i(&Y)Y5qp +3i(JY)YPY5(Y+). 

It can be shown that J, is gauge variant and insensitive to the perfect differential (19), 
and that the associated chiral charge is gauge invariant. Thus J, and e,,, have very 
similar gauge properties. 

2.6. Gauge invariants 

We are now prompted to ask what are the gauge invariants of this theory. 

but are nullified by the dynamics. A set of non-zero gauge invariants is the set 
Note that the left-hand sides of equations (2), (3), (4) and (5) are all gauge invariants, 

Fpv = avqp - a p + v *  (21) 

By PoincarC’s lemma, the set F’,(x) determines +, ( x )  to within a gauge transformation 
(7) and is therefore complete. In terms of FFU the field equations (2) read 

YvF,v+iYpYAYvFAv = o  
whence 

y”Fpv = 0. 

From (23) it is clear that the spatial components 4k are already complete, modulo 
the field equations. 
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2.7. Causality 

We can examine the causality properties in several ways. One way is to exploit the 
freedom of gauge and choose one in which the field equations (4) take a simple form. 

Consider a gauge transformation of (y$): (y$) + (y$)  + (y3)x. We can choose x to 
make (y$)  zero because (ya)  is a deterministic wave operator. In this gauge (4) reduces 
to (ya)qP = 0 which is manifestly deterministic. 

Alternatively, consider the equations of motion of the F,,, which from (21) and (23) 
are 

These are readily shown to constitute a completely deterministic system. Thus, 
although the whole theory is partly acausal we have now accounted for all the acausal 
features, in that we have found both the complete gauge group and a complete set of 
gauge invariants. 

3. Invariant quantization 

We shall quantize the theory directly, without invoking canonical concepts, by using the 
coordinate-invariant method described by Allcock (1975a) and Hall (1974), to whom 
the reader is referred for further details and consistency proofs. 

To the extent that one works with a general gauge it is neither meaningful nor 
possible to quantize gauge variant quantities-nly the gauge invariants can be 
quantized and so we work with the complete set (21) and not with the potentials 

3.1. General theory 
Let G1 and G2 be even gauge invariants of the theory. Consider the infinitesimal 
displacements of the solution, 61$,, generated by E G ~ ,  where E is an infinitesimal. 

The main generating equation for a,$, is 

where 5, (x) are the constraint functions ( 5 )  and A, (x) are continuous (anticlassical, 
imaginary) infinitesimal Lagrange multipliers so that the auxiliary variations a$,, can be 
regarded as being free, and where dFG/d$,(x’) is the right-handed anticlassical or 
Fermi-Dirac functional derivative defined by the factor ordering 

To the main equation (26) we must adjoin the equations of constraint which imply that 
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In all these equations spinor indices may properly be taken into account by regarding 
a, p, etc as compound indices. Now there is a general theorem (Allcock 1975a, 0 3.7, 
1975b, theorem 2) which guarantees that the joint system (26), (28) will have a solution 

for all allowed initial data (i.e. data obeying the constraints (a = 0). Moreover, in 
the same works it is proved that every freedom of the solution (i.e. every solution 
obtained by letting G1 = 0) will represent an infinitesimal gauge freedom, and that the 
gauge freedoms so found will exhaust the infinitesimal gauge group. 

The equal-time Poisson bracket of any two even gauge invariants G1 and G2 may 
therefore be unambiguously defined by either of the equivalent formulae 

where S2J/,  is the solution of (26) and (28) with G1 replaced by G,. The Poisson bracket 
introduced in this way may be carried over to quantum theory by Dirac’s rule of 
correspondence 

i(G1, G2)=GlGZ-G2G1. 

However, the system under consideration is of Fermi-Dirac type, requiring anticom- 
mutators. We therefore use Peierls’ device, putting 

G1 = iYIF1, G2 = iY2F2 

where Y1, Y2 are anticommuting constants (Allcock 1975a) and Fl and F2 are odd 
gauge invariants. We then define the anticlassical analogue of the quantum anticom- 
mutator by writing 

-iY1Y2{Fl, F,} = (iYIF1, iY2F2). (30) 

The Poisson bracket on the right-hand side in (30) can now be calculated using the 
above procedure, after which the arbitrary anticommuting constants can be taken to the 
left and cancelled. The rule of correspondence for the symmetric structure remaining is 

P l ,  FJ = FlF, + F2F1. (31) 

3.2. Application to the case in hand 

With these necessary preliminaries now set out we return to the massless spin-; field, 
writing spinor indices explicitly for clarity from now on. For G1 we take 

G, = iYIFl = iY1(ak& 

for which, by comparison with (27), we have 

The system only has one continuum of constraint equations (5 ) ,  namely 

tb(x) E ( d j q j - Y j a j Y k + k ) b  = 0, 
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whence 

From (9) 

Therefore we can write the right-hand side of (26) as 

ii [n, Y m ~ a b ~ l + ~ b ~ ; a  d3X'. (34) 

Substituting into (26) for all the above quantities we have, on integrating over 6 
functions and cancelling the auxiliary variation a$,', 
Si[Yl, 'Ym IabS14Jh = i ~ Y 1  (Sklaj - Sj /a ; )S  3 ( x  - x')Sac - 8ba aiA b + (YmYl)ba akA 6, 
or 

ii[ yl, ymlab (6 $h + #,,A A) = ieY (&,ai - S,, d;)S 3 ( x  - x ')Sac. 

It is easy to show that 
1 i y /y r .  z[Y~, 'Y,I= arm, 

therefore (35) can be solved: 

(35) 

6 $;a = -;CY ( ykrra; - %yra&,S 3(x  - x ' )  - ia:A h. 

171, Ym l a b  a;61 $lb = 0 

(36) 

(37) 

The constraint equations (28) read as 

and are satisfied no matter what the value of A. Thus A is free and this freedom in the 
solution corresponds exactly to the fact that 4, is gauge variant. Evidently A 
represents an infinitesimal displacement of gauge, a solution of (26) with G1 set equal to 
zero. Moreover, does not appear at all in the generating equations so that a second 
gauge freedom arises on this count. These two gauge freedoms are the only ones arising 
in the generating equations. Thus, at fixed time, we have just two independent 
continuous spinor-valued freedoms of solution, namely + -ia,.A and 
SI&,+ SS, where 6s is arbitrary. For variable time the field equations (2) give us that 
SS = --idoh. 

Thus the gauge freedoms found in the generating equations are indeed entirely 
equivalent to those found directly from the field equations, in accord with the general 
theory of Lagrangian systems. 

We can now use (36)  in (29). Taking 

Gz = iY2F2 = iY,(a;$;-a;~,b;)~, 

we evaluate S1G2 and hence (GI, G2)=-iYlY2{F1, F2}. The A term disappears since 
curl grad A = 0. We obtain finally 

{ (a /&j  - aj$k )cy (a;$; - a ; $ i > d }  

= -$[('YkYq)d,djap - ( k  wi) - (p f fq )+  ( k  +'i, pffq)]S3(X - X f ) *  (38) 
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This is symmetric as required since (ykyq)& = (yqyk)cd. Any other equal-time anticom- 
mutators can be obtained from (38) by exploiting (23). 

3.3. Positivity 

It is sufficient to consider Fourier components with the momentum along the 1-axis. It 
is then apparent that the anticommutators are characterized by the eight-dimensional 
matrix 

Since this matrix is real, symmetric and idempotent it is also positive. It is not positive 
definite because of the constraint yjYk(dj& -d&j) = 0, which follows from (24) or (5). 

5. Minimal interaction 

Incipient eerenkov radiation makes it impossible for massless charged particles to exist 
in the physical world. It is nevertheless instructive to consider motion in an external 
electromagnetic field, and to see what happens in the present case if we try to introduce 
minimal electromagnetic interaction. The greatest problem arises when we come to 
consider the spinor gauge transformation (7) .  Obviously we require invariance under 
the electromagnetic gauge transformation, and this leads us to write the spinor gauge 
transformation as 4, + $, + D d ,  where D, is the usual electromagnetic derivative. We 
now find that 9 is not invariant under this transformation, even to within a perfect 
differential, because of the non-commutativity of the D,, and that no additional terms 
can be added to 9 to restore gauge invariance. A Lagrangian theory of massless spin-? 
particles with minimal electromagnetic interaction is therefore not possible. 

5. Conclusions 

From (24) we can easily see that FWy belongs to an irreducible representation of the 
Lorentz group. It obeys y’FpY = 0, FPy = -Fy, giving eight free components. It is 
therefore quite clear that it belongs to the real representation ($, O)@(O, $) (Le Couteur 
1950). 

The various representations ( p ,  4 )  of the Lorentz group can be plotted on a diagram 
as in figure 1 (Le Couteur 1950). Only those involved in Fermi-Dirac systems are 
shown. Paired representations straddling the diagonal attain positivity. The Rarita- 
Schwinger vector-spinor belongs to (1, $)e(+, 1)0(+, 0 ) 0 ( 0 ,  $) which is a direct sum of 
two such paired representations. In the present work we have found a use for the 
representations at the edge of the diagram, namely (p,  0) and ( 0 , q ) ;  these are the gauge 
invariants of the massless theory. This also intimates the use of the representations 
( p ,  q )  ( p  +q = s, lp -91 # 4, p # 0, q # 0), such as (2!&) in spin-2 theory. These are inter- 
mediaries in the chain of differentiations leading from the variables of the action 
principle to the gauge invariants. Thus a definite descriptive role for these representa- 
tions appears for the first time in massless theories, although it is obvious that they 
cannot be incorporated into the massless action principle itself except by the use of 
dimensional constants, which we deem inappropriate. We take our work as confirming 
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x 

Figure 1. The representations of the Lorentz group involved in Fermi-Dirac systems. 
~ ~ ~ ~ a ’ ~ ’ - ~ ~ “ , y , F ’ ” = 0 , \ I r ’ ~ l C I ’ + ~ y ’ ( y l C I ) , ~ ~ ( ~ ~ ) .  

the essential correctness of the Rarita-Schwinger or Fierz-Pauli approach for massless 
particles, in which the representations away from the diagonal play no part in the 
Lagrange function itself. 

Previous workers (Johnson and Sudarshan 1961, Hurley 1972, Fisk and Tait 1973) 
as well as ourselves have tried, as yet to no avail, to incorporate the representation 
(t,  O)O(O, 2) into the massive spin-; Lagrangian in a satisfactory manner. We have felt 
for some time that this representation may perhaps have some dynamic role to play in 
the massive case, but have not yet reached an understanding of what this role might be. 
But we find considerable encouragement for further effort in this direction in the results 
reported above. At the same time we remark that our work indicates the very 
privileged position enjoyed by massless particles of spins 0, f and 1, these being the only 
massless particles for which energy and momentum can be defined locally. 
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